5 Fibreoptic bronchoscopy 78

5.1 History 79
5.2 Bronchoscopy simulator . 80
5.3 Carina 80
5.4 Left subcarina & beyond . . 81
5.5 Right subcarina & beyond . 83
5.6 Image orientation 85
 5.6.1 Axial rotation 85
 5.6.2 Bending 86
 5.6.3 Camera-mode 86
5.7 Anaesthesia for bronchoscopy 87
 5.7.1 Short duration 87
 5.7.2 Long duration 87
 5.7.3 Local anaesthesia & sedation 89
 5.7.4 Venturi jet ventilation 89
5.8 References 89
 5.8.1 Complications 90
 5.8.2 Fibreoptic intubation 90

FROM: Nickalls RWD. Notes on thoracic anaesthesia
REVISION: August 2011
Fibreoptic bronchoscopy

Fibreoptic bronchoscopy is an essential tool for viewing bronchial anatomy, and for facilitating correct placement of single and double-lumen endotracheal tubes, bronchial blockers and tracheostomies. In the Intensive Care Unit it is also used for bronchoalveolar lavage (BAL), secretion control and to facilitate lung re-expansion. Facility with a fibreoptic bronchoscope and familiarity with the endobronchial anatomy should be essential for all anaesthetists. Note the recent bronchoscopy issue of *Clinics in Chest Medicine* edited by Mehta (2010).

Fibreoptic bronchoscopy should, in my view, be a much more routine procedure in the general operating room, since in my experience there are many general surgery patients who stand to benefit from a quick peri-operative bronchoscopy while they are intubated for surgery. For example, all those patients with pulmonary secretions, recent chest infection, COPD, smokers etc. Bronchoscoping such patients for secretion control may well improve their oxygenation during anaesthesia, and will greatly reduce the likelihood of their suffering postoperative lobar collapse—a common cause for ITU admission postoperatively. Obese patients will often benefit from having the position of the ETT checked using a fibrescope, especially if in Trendelenberg.

2Although it is common practice to use a size 8 mm ETT for females in ITU, I find 8.5 mm a better size with regard to fibreoptic bronchoscopy. Once an 8 mm ETT has been in place for more than about 24hrs, even a small amount of tube secretions is often sufficient to make passing the regular (large) fibrescope difficult, sometimes requiring the ETT to be changed to 8.5 mm.

3If the ETT requires suctioning, then a quick bronchoscopy will probably be of greater perioperative benefit.

4Remember to send off a sputum or BAL sample for Gram stain, microscopy and culture.
• Hawkins N (2000). Fibreoptic intubation. (Greenwich Medical Media Ltd, Lond.)

• Wang Ko-Pen, Mehta AC and Turner JF (2004). Flexible bronchoscopy. 2nd ed. (Blackwell Publishing, UK). [see the excellent cardio-thoracic anatomy diagrams in chapter 5, showing how the vessels are related to the bronchial tree (Applied anatomy of the airways) by Kavuru MS and Mehta AC (2004), pp. 36–38]

5.1 History

Although the Englishman John Tyndall described the optical properties of flexible glass fibres in 1870, it was not until 1957 that the first ‘gastro-fibroscope’ was developed by B. Hirschowitz in the USA. An improved version was subsequently developed in Japan by the Machida Endoscope Co. Ltd in 1962. In 1964 the Japanese physician Shigeto Ikeda, in collaboration with the Machida Endoscope Co. Ltd, started developing a fibreoptic bronchoscope which was eventually manufactured in 1967 (Ikeda et al. 1968; Ikeda 1974). Ikeda’s conference presentation of an early prototype in 1966 is remembered by Dr Ono as follows:

> It was at this transitional period of decreasing pulmonary tuberculosis to increasing lung cancer that a flexible bronchofibroscope came to be recognized. The credit for
the first to report on the subject must go to Dr Shigeto Ikeda. He demonstrated it with motion pictures . . . in Copenhagen in August 1966. Also, Dr Ikeda was first to publish an article on the use of the flexible bronchofibrescope which appeared in the Journal of Japan Broncho-esophagological Society and Keio Journal of Medicine in 1968.

Ono J (Foreword; In: Ikeda, 1974).

5.2 Bronchoscopy simulator

There is a useful online simulator for demonstrating endobronchial anatomy on Peter Slinger’s thoracic anaesthesia website (http://www.thoracic-anesthesia.com/). You first have to take a brief test on double-lumen tube placement, giving a username and password, after which you can access the simulator. Importantly, you are then free to log-in and use the simulator anytime thereafter. Unfortunately some of the video images in the test are poor and unclear, but the simulator is generally good value and quite realistic.

5.3 Carina

The position of the carina is surprisingly variable (see Section ??), and depends on body shape, size, posture, operation (e.g., laparoscopy). Factors which alter the position of the diaphragm generally move the carina in a similar direction. Consequently, one should have a low threshold for using the fibrescope to check the position of the tube—when in doubt—and especially in the various cases described in Section ?? . The TEPID database predicts the distance to the carina in supine patients reasonably well (see Section ??).

To measure the distance between the end of the ETT and the carina, first place the tip of the fibrescope on the carina and then grip the fibrescope at the ETT swivel-connector. Now, while maintaining the same grip on the fibrescope, slowly withdraw the fibrescope until the end of the ETT just comes into view. Now the distance between your grip on the fibrescope and the ETT swivel-connector is the same as the distance between the end of the ETT and the carina.
5.4 Left subcarina & beyond

Figures 5.1 and 5.2 show the anatomy as seen down the fibrescope by an anaesthetist positioned at the head end of a supine patient (without the camera attachment).

The key features to note are (a) the orifices of the second-order bronchi either side of the left subcarina lie on a line running from top left to bottom right (see dashed line in Figure 5.1), (b) the first part of the left lower-lobe bronchus is characterised by the orifice of the bronchus to the apical segment of the left lower lobe at the 6–7 o’clock position, and (c) the orifice of the lingula bronchus (lower division of the left upper lobe bronchus) is the first division (on the RHS) of the left upper lobe bronchus (see Section ?? for nomenclature).

Figure 5.1:

Left: The left subcarina viewed from the carina, constructed from a CT-scan (so-called ‘virtual bronchoscopy’), showing the typical orientation of the left upper and lower second-order bronchi when viewed from the head end in a supine patient. *Copyright © RWD Nickalls & J James 2005*

Right: Schematic of the left picture, showing how the left upper-lobe bronchus divides into the lingula bronchus (Li) and the left upper division bronchus (LUL). In addition we see the characteristic position of the orifice of the apical bronchus (A) of the apical segment of the left lower lobe (LLL) just inside the entrance of the left lower-lobe bronchus, typically at the 6–7 o’clock position. Note the typical orientation (straight dashed line) of the second-order bronchi either side of the subcarina. The schematic shows the view associated with the closest safe approach of the end of the double-lumen tube (dashed circle) with respect to the left subcarina and second-order bronchi. *Copyright © RWD Nickalls 2005*

5See Section 5.6.3
Figure 5.2:

Top left: Left lung medial supine view.
Top right: Supine view of left lower-lobe bronchus.
Bottom: Close up view of the left supine hilum.

Note that the lung is shown in the supine position being viewed medially (cf. Figure ??), and hence the orientation of the left subcarina here is consistent with the images in Figure 5.1. Since this view also has the same orientation as that seen down the bronchoscope (viewed from the head end), it makes the anatomy much easier to understand. For example, we can now see clearly how in the supine position the bronchus to the apical segment (yellow) of the left lower-lobe descends almost vertically down from the first part of the lower lobe bronchus (see also Figure 5.1 opposite). *(From Brock (1942–1944), with permission).*
5.5 Right subcarina & beyond

Figure 5.3 shows the right upper lobe and the typical arrangement of the three bronchopulmonary segments.

![Figure 5.3:]

Left: The RUL viewed from the right main bronchus in the supine position, showing the typical orientation of the three bronchopulmonary segments; apical (blue), posterior (red), anterior (green).

Right: Lateral prone view—cf. Figures ?? and 5.4 (From Brock (1942–1944), with permission).

Figure 5.4 shows the anatomy as seen down the bronchoscope by an anaesthetist positioned at the head end of a supine patient (*without* the camera attachment.6) While the entrance to the right upper lobe is straightforward to recognise, its exact distance from the carina is fairly variable. The part between the right upper lobe and the middle lobe bronchus is known as the lower part of the right main bronchus.7

The key bronchoscopic features to note are (a) the entrance to the right upper lobe, and the configuration of its immediate subdivisions,8 (b) the orifice of the bronchus to the apical9 segment (yellow) of the lower lobe typically at the 5–6 o’clock position, and (c) the orifice of the middle lobe bronchus typically at the 12–2 o’clock position.

6See Section 5.6.3
7Historically known as the bronchus intermedius—see Section ?? for correct nomenclature.
8Typically three symmetrical sub-bronchi as shown in Figure ??—but quite variable.
9Sometimes known (incorrectly) as the superior segment—see Section ??.
Figure 5.4:

Top left: Right lung medial supine view. **Top right:** Supine view of right lower lobe bronchus. **Bottom:** Close up view of the right supine hilum.

Note that the lung in these views is shown in the supine position (cf. Figure ??). The orifice of the bronchus to the apical segment (yellow) of the lower lobe is typically in the 5–6 o’clock position. The orifice of the middle lobe bronchus is at the same level but in the 12–2 o’clock position. (*From Brock (1942–1944), with permission*).
5.6 Image orientation

A significant but seemingly neglected aspect of the fibreoptic bronchoscope (fibrescope) is the influence of the 3-D geometry of the combined set of optical fibres on the fidelity of the perceived orientation of the viewed image associated with (a) axial rotation, and (b) bending of the fibrescope. This is an interesting, if somewhat non-intuitive, feature of fibreoptics which has a significant bearing on the interpretation of the viewed images. Surprisingly, I have not as yet found any texts which discuss this.

It is important to be aware of this aspect of fibreoptic geometry, since appreciation of position within the essentially fractal structure of the bronchial tree is largely a matter of orientation and knowledge of asymmetric anatomical features. In my experience axial rotation (Section 5.6.1) can cause gross distortion of image orientation, whereas that associated with bending (Section 5.6.2) is generally minimal in a clinical setting.

To further complicate matters, these effects vary depending on whether the fibrescope is being used normally (monocular-mode) or with the camera attachment (camera-mode). We will address camera-mode at the end, but in the meantime unless specified, we will assume that we are dealing with normal monocular-mode.

5.6.1 Axial rotation

Under normal circumstances (monocular-mode) when a fibrescope is rotated axially (and able to freely rotate throughout its length), the visual image remains fixed (on the retina)—providing the observer’s head is fixed—and hence the image does not rotate. However, if, during manual proximal axial rotation, the fibrescope is gripped distally (i.e., fails to rotate synchronously with the proximal end) then the observer (fixed) will see the image rotate with, and in the same sense as, the proximal end of the fibrescope.

Consequently, I routinely use the following simple manoeuvre to determine whether a given image reflects the true orientation of the object, namely:- manually rotate the fibrescope (axially) back and forth slightly and observe whether the image rotates accordingly or not. If the image fails to rotate (i.e., the fibrescope is not gripped or restricted distally) we can be confident that the image shows the true orientation of the object, in which case the observed orientation can be safely used to guide the observer regarding true location within the bronchial tree.

If the image does rotate with the fibrescope (i.e., the fibrescope is gripped or restricted distally), then a situation of false orientation can be said to exist, and hence the orientation must be assumed to be false unless proven otherwise, in which case the user should not place any reliance on the perceived orientation of the image when determining location. In this case, only those anatomical landmarks having a known asymmetry can be relied upon for determining location within the bronchial tree.

10 Because no rotation implies that the fibrescope is not gripped, and therefore we know the view is ‘true’.
11 In the same way that although a ‘stopped’ watch will occasionally be correct (twice a day if it is an analogue watch), in practice the time shown must be assumed to be false until proven otherwise.
For example, the left upper- and lower-lobe orifices are orientated either side of the left subcarina typically on a line running from top-left to bottom-right when viewed in a supine patient from the head end (see Figure 5.1). If the fibrescope is gripped sufficiently so that ‘false orientation’ exists, then the apparent orientation of the left subcarina will vary with the rotation of the fibrescope. Consequently, the anaesthetist may be misled by the perceived orientation unless the existence of ‘false orientation’ is checked for (see above) and recognised. If ‘false orientation’ is confirmed, then the anaesthetist will need to check for known asymmetries (e.g., the location of the bronchus to the apical segment of the left lower lobe) in order to confirm that the object in question is actually the left subcarina.

Naturally, in the context of thoracic surgery, one must be alert to the possibility that local pathology may alter the expected orientation of structures.

5.6.2 Bending

As the fibrescope passes further into the bronchial tree, it is necessarily bent in various directions. For example, in order to look at the left subcarina the fibrescope must pass down the trachea (inclined approximately 15 degrees below the horizontal) and then down the left main bronchus (deviated about 45 degrees towards the left). Bending the fibrescope successively through these two directions results in the tip of the fibrescope being rotated axially in a clockwise direction (compared with a straight fibrescope held horizontally in the direction of the trachea), resulting in a small ‘false’ anti-clockwise rotation of the image of the left subcarina. The magnitude of the image rotation is the product of the first angle multiplied by the sine of the second angle, and in this particular example would be a barely noticeable 10 degree anticlockwise rotation,

\[15^\circ \times \sin 45^\circ = 10^\circ 6', \]

This represents another interesting, if somewhat even more non-intuitive, example of orientation distortion arising from the 3-D geometry of the fibrescope. If you removed the left main bronchus, mediastinum and right lung so as to be able to look directly at the left subcarina in the supine position (see Figure 5.2) you would see the true orientation, as shown by a CAT scan (see Figure 5.1).

5.6.3 Camera-mode

A camera attachment is often used with the fibrescope for teaching purposes, and also to facilitate visualisation during percutaneous dilational tracheostomy.

Hazard for the unwary: It is very important to appreciate that camera-mode introduces two significant differences with respect to image orientation compared with monocular-mode, and hence the orientation must be assumed to be false unless proven otherwise. Firstly, the camera introduces a systematic and arbitrary image rotation—since

12Note that assigning a negative sign to the directions Lower and Left (and conversely)—when viewed monocularly from the head-end of a supine patient—associates anticlockwise with +ve, and clockwise with −ve image rotation. Thus, in the above example of the left subcarina, we have \((-15^\circ) \times (\sin 45^\circ) = +10^\circ 6',\) i.e., there is anticlockwise image rotation.
it can be attached to the eye-piece in any position. Second, the camera reverses the axial rotation effect on the screen image compared to monocular-mode.

For orientation to be correct during camera-mode, the camera position relative to the bronchoscope needs to be ‘calibrated’ against reality; i.e., when attaching the camera one must first rotate it relative to the bronchoscope in order to align the screen image appropriately with the patient before locking it in position. For example, when using camera-mode while performing a tracheostomy, we first ‘calibrate’ by rotating the camera relative to the bronchoscope until anterior movement on the trachea corresponds with vertical motion on the monitor/screen. Failure to calibrate accurately can result in a true anterior indentation of the trachea appearing instead to be from one side.

As before, there are two scenarios to consider: (1) fibrescope free to rotate, and (2) fibrescope gripped distally.

1. **Fibrescope free to rotate**: When the fibrescope-camera unit is rotated axially the screen image rotates in the opposite direction, since the image mapping from the camera to the monitor screen is fixed. [in monocular-mode, assuming the viewer’s head is fixed, there is no such rotation]

 This is typically the situation when surgeons use the camera attachment on a fibrescope passed down the lumen of a rigid bronchoscope, since in this setting the fibrescope is always free to rotate as there is nothing to grip it.

2. **Fibrescope gripped**: If the fibrescope is gripped distally while the proximal end is manually rotated, then the screen image does not rotate. [in monocular-mode there is rotation in the same direction]

 This situation often arises when the fibrescope is passed down an endotracheal tube, since the fibrescope is usually gripped to some extent by the rubber air-tight seal at the entrance of the endotracheal tube.

5.7 Anaesthesia for bronchoscopy

5.7.1 Short duration

Intermittent boluses of propofol, suxamethonium and remifentanil increments.

5.7.2 Long duration

Propofol TIVA is particularly useful for prolonged bronchoscopy (e.g., for reboring tracheal tumours, multiple biopsies, insertion of stents. With the Alaris pump use the Schnider

13See Section ??.
14e.g., Montgomery tubes (see Section ??)
algorithm for propofol TCI, and the Minto algorithm for remifentanil TCI (Absalom and Struys 2007), since both of these use the Lean Body Mass (LBM) calculated from the entered total body weight and height. An arterial line is worth considering, especially with frail patients and difficult cases.

An induction plasma concentration (C_p) target for adults of 7 µg/ml followed (once the rigid bronchoscope has been inserted) by a maintenance target of about 5–6 µg/ml plus a narcotic (e.g., remifentanil) generally works well (reduce these somewhat if the patient is elderly and/or frail). Consider an initial remifentanil bolus of about 100 µg (for a 70 kg patient) followed by about 250 µg/hr. Sometimes it is more convenient to give the remifentanil as intermittent boluses rather than run a second pump. A long acting relaxant is generally best, but sometimes it is worth starting with intermittent suxamethonium and converting later if necessary.

Historically, a suxamethonium infusion would often have been used in this setting; it can still be useful on occasions. The technique for adults is to use 500 mg in 500 mls saline—run at about 3 mg/min (a normal blood giving-set has 25 drops = 1 ml, so 3 mg/min is 75 drops/min). Avoid using the infusion for more than about 30 mins (in order to keep the total suxamethonium dose less than about $3 \times$ kg), and always use a nerve stimulator to help minimise the total dose and avoid a type-II block (always take care to label the infusion very clearly).

• Aly EE (2002). Anaesthesia for bronchoscopy. *Anaesthesia*; 57, 93–94. (letter and reply) [using propofol and remifentanil]

Note that there is a potential problem when using TCI with lean body mass (LBM) algorithms in obese patients. For any given height the calculated LBM rises to a maximum and then falls as weight increases, and so in obese patients you need to use that body weight which generates the maximum LBM—see Absalom and Struys (2007), pp. 30–33 for details and useful charts.

5.7.3 Local anaesthesia & sedation

5.7.4 Venturi jet ventilation

The first practical venturi jet system for ventilating down a rigid bronchoscope was developed in 1967 by Richard Douglas Sanders (Buckley 1992; Sanders 1967; Aikens and Bancroft 1977; Maltby 2002). See article by Baraka et al. (2001) for details of its use for ventilating down an endotracheal tube (above a tracheal stenosis). Robinson (1997) describes the use of a Hunsaker jet ventilation tube. The potential dangers (e.g., pneumothorax) associated with jet ventilation via exchange catheters is addressed by Benumof (1991). See also Section ?? on difficult airways.

5.8 References

Patel C and Diba A (2004). Measuring tracheal airway pressures during transtracheal jet ventilation: an observational study. Anaesthesia; 59, 248–251. [carinal pressure changes were small; approximately 13 mmHg only]

5.8.1 Complications

5.8.2 Fibreoptic intubation

