The quartic equation: invariants and Euler's solution revealed ${ }^{\square}$

RWD Nickalls ${ }^{2}$

The Mathematical Gazette (2009); vol. 93 (March; No. 526), pp. 66-75
http://www.nickalls.org/dick/papers/maths/quartic2009.pdf

1 Introduction

The central role of the resolvent cubic in the solution of the quartic was first appreciated by Leonard Euler (1707-1783). Euler's quartic solution first appeared as a brief section (§5) in a paper on roots of equations [1, 2], and was later expanded into a chapter entitled Of a new method of resolving equations of the fourth degree ($\S \S 773-783$) in his Elements of algebra $[3,4]$.

Euler's quartic solution was an important advance, in which he showed that each of the roots of a reduced quartic can be represented as the sum of three square roots, say $\pm \sqrt{r_{1}} \pm \sqrt{r_{2}} \pm \sqrt{r_{3}}$, where the $r_{i}(i=1,2,3)$ are the roots of a resolvent cubic. A quartic equation in x is said to be reduced if the coefficient of x^{3} is zero. This can always be achieved by a simple change of variable.

Motivated by the recent tercentenary of Euler's birth, this article describes the geometric basis underlying both the r_{i} and the sign of the product $\sqrt{r_{1} r_{2} r_{3}}$, these being two key aspects of Euler's solution. Finally, we reveal the beautiful dynamic between Euler's resolvent cubic and the quartic invariants G, H, I, J $[5,6,7]$, and propose a new class of algebraic object.

2 Geometric basis for the r_{i}

A significant property of the reduced quartic equation is that the four roots can be completely defined using only three parameters. For example, let z_{j} ($j=1,2,3,4$) be the roots (see Figure 1) of a reduced quartic equation,

$$
\begin{equation*}
Z(x) \equiv a x^{4}+p x^{2}+q x+r=0 \tag{1}
\end{equation*}
$$

As the sum of the roots is zero (the coefficient of the cubic term is zero), it follows that we can define the points midway between z_{1}, z_{2} and z_{3}, z_{4} as $\pm g$. Let $z_{2}-z_{1}=2 \alpha$ and $z_{4}-z_{3}=2 \beta$. The four roots can then be expressed as follows:

$$
\left\{\begin{array}{l}
z_{1}, z_{2}=-g \pm \alpha, \\
z_{3}, z_{4}=+g \pm \beta
\end{array}\right.
$$

Since specifying one pair of quartic roots necessarily defines the remaining pair, there are just three different ways of allocating the pairs of roots, each associated with its own g, α, β, the inter-relationship between which lies at the heart of a remarkable symmetry which underpins the solution of the quartic.

[^0]

Figure 1:
For example if, with no loss of generality, we let

$$
\left\{\begin{array}{l}
z_{3}+z_{4}=2 g_{1} \tag{2}\\
z_{3}+z_{1}=2 g_{2} \\
z_{3}+z_{2}=2 g_{3}
\end{array}\right.
$$

then

$$
\begin{aligned}
2\left(g_{2}+g_{3}\right) & =2 z_{3}+z_{1}+z_{2} \\
& =\left(z_{1}+z_{2}+z_{3}+z_{4}\right)+z_{3}-z_{4}, \\
& =z_{3}-z_{4}=-2 \beta_{1},
\end{aligned}
$$

and similarly

$$
2\left(g_{2}-g_{3}\right)=z_{1}-z_{2}=-2 \alpha_{1}
$$

and hence

$$
\left\{\begin{array}{l}
\alpha_{1}=-\left(g_{2}-g_{3}\right), \\
\beta_{1}=-\left(g_{2}+g_{3}\right)
\end{array}\right.
$$

Thus the $\alpha_{k}, \beta_{k}(k=1,2,3)$ are actually simple functions of the $g_{i}(i \neq k)$ such that each of the four roots z_{j} can be expressed as a function of the g_{i} alone, as follows ${ }^{3}$

$$
\left\{\begin{array}{l}
z_{1}=-g_{1}-\alpha_{1}=-g_{1}+\left(g_{2}-g_{3}\right)=-g_{1}+g_{2}-g_{3} \tag{3}\\
z_{2}=-g_{1}+\alpha_{1}=-g_{1}-\left(g_{2}-g_{3}\right)=-g_{1}-g_{2}+g_{3} \\
z_{3}=+g_{1}-\beta_{1}=+g_{1}+\left(g_{2}+g_{3}\right)=+g_{1}+g_{2}+g_{3} \\
z_{4}=+g_{1}+\beta_{1}=+g_{1}-\left(g_{2}+g_{3}\right)=+g_{1}-g_{2}-g_{3}
\end{array}\right.
$$

Thus Euler's r_{i} are the same as the g_{i}^{2}.

3 Euler's resolvent cubic

Using these observations we can reconstruct a given reduced quartic equation, say Equation 1 which then leads to a resolvent cubic and hence to the solution. Let the roots of $Z(x)=0$ be $-g \pm \alpha$ and $g \pm \beta$ (Figure 1 .

$$
Z(x) \equiv\{x-(-g-\alpha)\}\{x-(-g+\alpha)\}\{x-(g-\beta)\}\{x-(g+\beta)\}=0
$$

Expanding and letting $A=g^{2}-\alpha^{2}$ and $B=g^{2}-\beta^{2}$, gives

$$
x^{4}+\left(-4 g^{2}+A+B\right) x^{2}+(2 g)(B-A) x+A B=0 .
$$

[^1]We can eliminate α, β by first equating coefficients with the monic form of Equation 1 giving

$$
\left\{\begin{array}{l}
p / a=-4 g^{2}+A+B \\
q / a=2 g(B-A) \\
r / a=A B
\end{array}\right.
$$

and then eliminating A and B (using the identity $4 A B=2 A \times 2 B$), which generates a resolvent sextic in g, the roots of which are the six values $\pm g_{1}, \pm g_{2}, \pm g_{3}$. The substitution $g^{2} \mapsto x$ then generates Euler's original resolvent cubic [1, 2, 3, 4]

$$
\begin{equation*}
R(x) \equiv x^{3}+\frac{p}{2 a} x^{2}+\left(\frac{p^{2}-4 a r}{16 a^{2}}\right) x-\frac{q^{2}}{64 a^{2}}=0 \tag{4}
\end{equation*}
$$

whose roots r_{i} are therefore $g_{1}^{2}, g_{2}^{2}, g_{3}^{2}$. The four roots of the reduced quartic $Z(x)=0$ are among the eight possible values of $\pm \sqrt{r_{1}} \pm \sqrt{r_{2}} \pm \sqrt{r_{3}}$; but in order to determine which four they are we need a way of allocating the signs correctly.

Euler, using a monic quartic of the form $x^{4}-l x^{2}-m x-n=0$, says he resolved the sign problem by noting that $\sqrt{r_{1} r_{2} r_{3}}=m / 8$, as follows [3, §773]:
\ldots But it is to be observed, that the product $\ldots \sqrt{r_{1} r_{2} r_{3}}$, must be equal to $m / 8$, and that if $m / 8$ be positive, the product of the terms $\sqrt{r_{1}}, \sqrt{r_{2}}, \sqrt{r_{3}}$, must likewise be positive;
Unfortunately Euler did not elaborate further on this, but the key to understanding the sign problem is not difficult to find, since from Equation 2 we have

$$
\begin{aligned}
8 g_{1} g_{2} g_{3} & =\left(z_{3}+z_{4}\right)\left(z_{3}+z_{1}\right)\left(z_{3}+z_{2}\right) \\
& =z_{3}^{3}+z_{3}^{2}\left(z_{1}+z_{2}+z_{4}\right)+z_{3}\left(z_{2} z_{1}+z_{2} z_{4}+z_{1} z_{4}\right)+z_{4} z_{1} z_{2}
\end{aligned}
$$

Now $z_{1}+z_{2}+z_{4}=-z_{3}\left(\right.$ since $\left.\Sigma z_{j}=0\right)$, hence

$$
\begin{equation*}
8 g_{1} g_{2} g_{3}=z_{1} z_{2} z_{3}+z_{2} z_{3} z_{4}+z_{3} z_{4} z_{1}+z_{4} z_{1} z_{2} \tag{5}
\end{equation*}
$$

and so $8 g_{1} g_{2} g_{3}$ is actually one of the four elementary symmetric functions of the roots z_{j}. Its value is therefore equal to $-1 \times$ the coefficient of the x-term of the monic form of the reduced quartic equation $Z(x)=0$, and so we have

$$
\begin{equation*}
8 \sqrt{r_{1} r_{2} r_{3}}=8 g_{1} g_{2} g_{3}=-q / a \tag{5a}
\end{equation*}
$$

which is equivalent to Euler's $\sqrt{r_{1} r_{2} r_{3}}=m / 8$.

4 Geometric basis for the sign of $\sqrt{r_{1} r_{2} r_{3}}$

A useful way of 'seeing' the quartic algebra at work is to express the coefficients in terms of the key 'visible' parameters $\varepsilon, y_{N z}, y_{N z^{\prime}}$ shown in Figure 2, as follows: Let $F(X)$ be a quartic polynomial with real coefficients $(a \neq 0)$

$$
\begin{equation*}
F(X) \equiv a X^{4}+b X^{3}+c X^{2}+d X+e \tag{6}
\end{equation*}
$$

with invariants [6, p. 76]

$$
\left\{\begin{align*}
G & =b^{3}+8 a^{2} d-4 a b c \tag{7}\\
H & =8 a c-3 b^{2} \\
I & =12 a e-3 b d+c^{2} \\
J & =72 a c e+9 b c d-27 a d^{2}-27 e b^{2}-2 c^{3}
\end{align*}\right.
$$

Figure 2:
The reduced quartic $Z(x)$, turning points $\left(T_{1}, T_{2}, T_{3}\right)$, points of inflection $\left(I_{1}, I_{2}\right)$, and first differential $Z^{\prime}(x)$. The x-coordinates of the points of inflection are $\pm \varepsilon$. The curves intersect the y-axis at points N_{z} and $N_{z^{\prime}}$.

Let its reduced form $Z(x)$ be generated by the translation $X \mapsto x+X_{N f}$, where $X_{N f}=-b /(4 a)$. Using Taylor's theorem we have

$$
\begin{equation*}
Z(x) \equiv F\left(x+X_{N f}\right)=a x^{4}+\frac{F^{\prime \prime}\left(X_{N f}\right)}{2} x^{2}+F^{\prime}\left(X_{N f}\right) x+F\left(X_{N f}\right) . \tag{8}
\end{equation*}
$$

If $Z(x)$ and $Z^{\prime}(x)$ intersect the y-axis in points N_{z} and $N_{z^{\prime}}$ respectively, then Equation 8 can be expressed as

$$
\begin{equation*}
Z(x) \equiv a x^{4}-6 a \varepsilon^{2} x^{2}+y_{N z^{\prime}} x+y_{N z} \tag{9}
\end{equation*}
$$

where (see Equation 4 and Figures 2, 3)

$$
\left\{\begin{align*}
\varepsilon^{2} & =\frac{\left(3 b^{2}-8 a c\right)}{48 a^{2}} \equiv \frac{-H}{48 a^{2}} \equiv \frac{-p}{6 a} \tag{10}\\
y_{N z} & =F\left(X_{N f}\right) \equiv \frac{I}{12 a}-\frac{3 H^{2}}{48^{2} a^{3}} \equiv r \\
y_{N z^{\prime}} & =F^{\prime}\left(X_{N f}\right) \equiv \frac{G}{8 a^{2}} \equiv q \\
-12 a \varepsilon^{2} & =F^{\prime \prime}\left(X_{N f}\right)
\end{align*}\right.
$$

Expressing the reduced quartic $Z(x)$ in this form (Equation 9) greatly facilitates visualisation, since we can now 'see' how the configuration of the curves $Z(x)$ and $Z^{\prime}(x)$ is related to the coefficients. For example (assuming $a>0$), if the x^{2} term is positive then ε is complex $\left(\varepsilon^{2}<0\right)$, and so the quartic will have two complex points of inflection and hence only one real turning point (cf. [10]).

If $x_{T_{i}}$ are the x-coordinates of the turning points of $Z(x)$, then by differentiating Equation 9 we have (see Equations $5 a$ and 10)

$$
\begin{equation*}
4 x_{T_{1}} x_{T_{2}} x_{T_{3}}=\frac{-y_{N z^{\prime}}}{a}=8 \sqrt{r_{1} r_{2} r_{3}} \tag{11}
\end{equation*}
$$

and hence the sign of $\sqrt{r_{1} r_{2} r_{3}}$ is the same as that of $-y_{N z^{\prime}} / a$ and $x_{T_{1}} x_{T_{2}} x_{T_{3}}$. It follows, therefore, that we can actually 'see' the correct sign of $\sqrt{r_{1} r_{2} r_{3}}$ simply by observing the signs of the abscissae of the turning points of the reduced quartic, or by noting the location of $N_{z^{\prime}}$ in relation to the abscissa.

For example (assuming $a>0$), if the roots z_{j} are such that the middle turning point, T_{2}, is to the left of the y-axis, then not only will $y_{N z^{\prime}}$ be negative (Figure 2) but just two of the three $x_{T_{i}}$ will be negative resulting in a positive product for $x_{T_{1}} x_{T_{2}} x_{T_{3}}$, and hence $\sqrt{r_{1} r_{2} r_{3}}$ will also be positive (see Equation 11 . Conversely, if the middle turning point is to the right of the y-axis, then $y_{N z^{\prime}}$ will be positive, and only one of the $x_{T_{i}}$ will be negative making the product $x_{T_{1}} x_{T_{2}} x_{T_{3}}$ negative.

5 Roots

As regards the roots z_{j} of the reduced quartic $Z(x)$, we can initially choose any sign combination for the $\sqrt{r_{i}}$, and then evaluate the sign of the product $\sqrt{r_{1} r_{2} r_{3}}$. If the sign of the product is the same as that of $-y_{N z^{\prime}} / a$ (see Equation 11) then we have a valid combination of signs, and can proceed to determine the four z_{j} using Equation 3. Otherwise, it is only necessary to change the sign of any one of the $\sqrt{r_{i}}$ (say, $\sqrt{r_{1}} \rightarrow-\sqrt{r_{1}}$), and proceed as before using Equation 3

When the reduced quartic is symmetric about the y-axis one of the $x_{T_{i}}$ will be zero and hence the product $\sqrt{r_{1} r_{2} r_{3}}$ is zero. However, the solution in this case is trivial since $Z(x)$ is then an even function as $y_{N z^{\prime}}$ is also zero.

6 Application

Since all resolvent cubics of the quartic can be transformed to a standard form [9], typically expressed as [6, p. 77]

$$
\begin{equation*}
T(x) \equiv x^{3}-3 I x+J \tag{12}
\end{equation*}
$$

we can solve any quartic by solving instead a simple reduced form of the resolvent, say $T(x)=0$, and then recover the roots of Euler's resolvent using the transformation which carries the reduced form back to $R(x)$.

For example, the translation $x \mapsto x+x_{N r}$ to reduce $R(x)$, for which $x_{N r}=-p /(6 a) \equiv \varepsilon^{2}$, generates the reduced form $S(x)$, as follows:

$$
\begin{equation*}
S(x) \equiv R\left(x+\varepsilon^{2}\right) \equiv x^{3}-\frac{I}{48 a^{2}} x+\frac{J}{1728 a^{3}} \tag{13}
\end{equation*}
$$

The substitution $x \mapsto x /(12 a)$ then scales $1728 a^{3} S(x)$ to $T(x)$, and hence if the roots of $S(x)=0$ and $T(x)=0$ are s_{i} and t_{i} respectively, then

$$
\begin{equation*}
r_{i}=s_{i}+\varepsilon^{2}=\frac{t_{i}}{12 a}+\varepsilon^{2} \tag{14}
\end{equation*}
$$

This convenient approach is illustrated in Example 1.

Figure 3:
Euler's resolvent cubic $R(x)$ with three real roots ($h_{r}^{2}>y_{N_{r}}^{2}$, i.e. $4 I^{3}>J^{2}$) which are all positive $\left(\varepsilon^{2}>0, x_{N_{r}}^{2}>\delta_{r}^{2}\right)$. The conditions $\varepsilon^{2}>0, x_{N_{r}}^{2}<\delta_{r}^{2}$ are associated with two negative roots (dashed curve). Note that G^{2}, H, I, J are constant multiples respectively of the resolvent's geometric parameters $y_{P}, x_{N_{r}}, \delta_{r}^{2}, y_{N_{r}}\left(\rho_{1}=64^{2} a^{6}, \rho_{2}=48 a^{2}, \rho_{3}=1728 a^{3}, \rho_{4}=12 a\right)$.

The invariants I, J are readily visualised since any reduced cubic can be expressed in terms of its geometric parameters δ and y_{N} as in [8]

$$
\begin{equation*}
A x^{3}-3 A \delta^{2} x+y_{N}=0 \tag{15}
\end{equation*}
$$

For example, equating coefficients between $S(x), T(x)$ and the monic form of Equation 15 and noting that $h^{2}=4 A^{2} \delta^{6}[8]$, shows that I, J are simply constant multiples of δ^{2}, y_{N} as follows (Figure 3):

$$
\left\{\begin{align*}
A_{r} & =A_{s}=A_{t}=1 \tag{16}\\
I & =\delta_{r}^{2}(12 a)^{2}=\delta_{s}^{2}(12 a)^{2}=\delta_{t}^{2} \\
J & =y_{N_{r}}(12 a)^{3}=y_{N s}(12 a)^{3}=y_{N t} \\
\frac{4 I^{3}}{J^{2}} & =\left(\frac{h_{r}}{y_{N r}}\right)^{2}=\left(\frac{h_{s}}{y_{N s}}\right)^{2}=\left(\frac{h_{t}}{y_{N t}}\right)^{2}
\end{align*}\right.
$$

Thus each of these invariants has a visible geometric interpretation in relation to Euler's resolvent cubic, either as a position parameter with respect to the axes (G, H, J), or as a shape parameter (I). For example, we can now see that the condition $J=0$ simply indicates that the N-point of the resolvent cubic lies on the x-axis and all that that implies (see Example 2). Similarly, the condition $I=0$ indicates that the resolvent adopts the 'cubic parabola' form. Furthermore $y_{P} \leq 0$, which reveals how and why the resolvent cubic cannot have just a single negative root ${ }^{4}$ The syzygy $-27 G^{2}=H^{3}-48 a^{2} I H+64 a^{3} J[6$, p. 76] is generated by substituting into $S(x)$ the coordinates of $P\left(H /\left(48 a^{2}\right),-G^{2} /\left(64^{2} a^{6}\right)\right)$.

[^2]
7 Euler's cubic and the quartic root configurations

A very significant but seemingly overlooked aspect of Euler's resolvent cubic is its beautiful and symmetric relationship with two important algebraic objects, namely the discriminant $4 I^{3}-J^{2}$ and the seminvariant $H^{2}-16 a^{2} I$, the signs of which distinguish between the various quartic root configurations $[5, \S 68$; 6 , p. 80; 7, p. 28]. Visualising the resolvent in relation to the invariants (Figure 3) reveals the mechanisms, as follows:

$7.1 \quad 4 I^{3}-J^{2}$

Since $h^{2}=4 A^{2} \delta^{6}[8]$, it follows from Equation 16 that

$$
\begin{equation*}
\frac{-\left(4 I^{3}-J^{2}\right)}{12^{6} a^{6}}=y_{N r}^{2}-h_{r}^{2} . \tag{17}
\end{equation*}
$$

Thus the quartic discriminant $4 I^{3}-J^{2}$ is simply a constant multiple of $y_{N r}^{2}-h_{r}^{2}$, the sign of which reflects whether the x-axis lies between $\left(y_{N_{r}}^{2}<h_{r}^{2}\right)$, on $\left(y_{N r}^{2}=h_{r}^{2}\right)$, or outside $\left(y_{N_{r}}^{2}>h_{r}^{2}\right)$ the turning points of the resolvent cubic (Figure 3).

$7.2 \quad H^{2}-16 a^{2} I$

The sign of this algebraic object distinguishes (when $\varepsilon^{2}>0$) between the then two possible quartic root configurations associated with the case $4 I^{3}-J^{2}>0$, namely (a) four real roots $\left(H^{2}-16 a^{2} I>0\right)$, and (b) four complex roots $\left(H^{2}-16 a^{2} I<0\right)$ [5, §68]. Substituting for H (Equation 10) and I (Equation 16] gives

$$
H^{2}-16 a^{2} I=\left(-48 a^{2} \varepsilon^{2}\right)^{2}-16 a^{2}\left(12^{2} a^{2} \delta_{r}^{2}\right)=3^{2} 4^{4} a^{4}\left(\varepsilon^{4}-\delta_{r}^{2}\right)
$$

But $\varepsilon^{2}=x_{N r}$ (Figure 3) and hence

$$
\begin{equation*}
\frac{H^{2}-16 a^{2} I}{3^{2} 4^{4} a^{4}}=x_{N r}^{2}-\delta_{r}^{2} . \tag{18}
\end{equation*}
$$

Thus $H^{2}-16 a^{2} I$ is just a constant multiple of $x_{N_{r}}^{2}-\delta_{r}^{2}$, the sign of which (when $\varepsilon^{2}>0$) reflects whether the y-axis lies between $\left(x_{N_{r}}^{2}<\delta_{r}^{2}\right)$, on $\left(x_{N_{r}}^{2}=\delta_{r}^{2}\right)$, or outside $\left(x_{N r}^{2}>\delta_{r}^{2}\right)$ the turning points of the resolvent cubic (cf. [6, p. 80, proposition 7]).

For example (Figure 3), when a quartic with three real turning points $\left(\varepsilon^{2}>0\right)$ has four real roots $\left(4 I^{3}-J^{2}>0\right)$ Euler's cubic $R(x)$ has three positive real roots - the y-axis lies outside the two turning points-and so $x_{N_{r}}^{2}>\delta_{r}^{2}$ and hence $H^{2}-16 a^{2} I>0$.

Conversely, when a quartic with three real turning points $\left(\varepsilon^{2}>0\right)$ has four complex roots $\left(4 I^{3}-J^{2}>0\right), R(x)$ then has exactly two negative real roots, and so its turning point T^{\prime} (Figure 3 lies to the left of the y-axis $\left(x_{N r}^{2}<\delta_{r}^{2}\right)$, hence $H^{2}-16 a^{2} I<0$.

7.3 A new class of object?

Since $H^{2}-16 a^{2} I$ functions with regard to the y-axis in exactly the same way that $4 I^{3}-J^{2}$ functions with regard to the x-axis, I would like to suggest that this pair of algebraic objects should be regarded as forming a distinct class of object - thereby linking two previously independent algebraic quantities with a single unifying concept.

8 Example 1

Solve $f(X) \equiv X^{4}-11 X^{3}+41 X^{2}-61 X+30=0$.
The key parameters are: $a=1, X_{N f}=11 / 4, Y_{N f^{\prime}}=f^{\prime}\left(X_{N f}\right)=-15 / 8, G=-15$, $I=28, J=-160, \varepsilon^{2}=35 / 48$. Using say, $T(x)$, we solve ${ }^{5}$

$$
T(x) \equiv x^{3}-84 x-160=0
$$

the three t_{i} being $-8,-2,10$. The $\sqrt{r_{i}}$ are therefore given by

$$
\left\{\begin{array}{l}
\sqrt{r_{1}}=\sqrt{\varepsilon^{2}+\frac{t_{1}}{12 a}}=\sqrt{\frac{35}{48}-\frac{8}{12}}=\frac{1}{4} \\
\sqrt{r_{2}}=\sqrt{\varepsilon^{2}+\frac{t_{2}}{12 a}}=\sqrt{\frac{35}{48}-\frac{2}{12}}=\frac{3}{4} \\
\sqrt{r_{3}}=\sqrt{\varepsilon^{2}+\frac{t_{3}}{12 a}}=\sqrt{\frac{35}{48}+\frac{10}{12}}=\frac{5}{4}
\end{array}\right.
$$

Since the sign of $-Y_{N f^{\prime}} / a$ is positive ${ }^{6}$ then the product of the $\sqrt{r_{i}}$ must also be positive - which it is. Finally, adding $X_{N f}$ recovers the quartic roots ($X_{j}=X_{N f} \pm \sqrt{r_{1}} \pm \sqrt{r_{2}} \pm \sqrt{r_{3}}$) using (3) as follows:

$$
\left\{\begin{array}{l}
X_{1}=\frac{11}{4}-\frac{1}{4}+\frac{3}{4}-\frac{5}{4}=2 \\
X_{2}=\frac{11}{4}-\frac{1}{4}-\frac{3}{4}+\frac{5}{4}=3 \\
X_{3}=\frac{11}{4}+\frac{1}{4}+\frac{3}{4}+\frac{5}{4}=5 \\
X_{4}=\frac{11}{4}+\frac{1}{4}-\frac{3}{4}-\frac{5}{4}=1
\end{array}\right.
$$

Even the solution of $T(x)=0$ is greatly simplified since δ, h, y_{N} are simple functions of I and J (see Equation 16). For example, $T(x)=0$ has three real roots in this case since $\left(y_{N t} / h_{t}\right)^{2} \equiv J^{2} /\left(4 I^{3}\right) \leq 1[8]$.

9 Example 2

Explain the significance of $J=0, I>0$, for a quartic with four real roots.
The condition $J=0$ implies that Euler's resolvent cubic has its N-point on the x-axis (Figure 3), and hence it has three roots in arithmetic progression. If also $I>0$ (resolvent cubic has two real turning points), then the resolvent's roots are distinct and (with the root at infinity) form a harmonic range. Since the roots of the parent quartic have the same cross-ratio they also form a harmonic range.

[^3]
10 Acknowledgements

I would like to thank Professor JE Cremona (University of Warwick) for reading drafts of this paper and for his constructive comments. I also acknowledge the helpful suggestions of the anonymous reviewer.

11 References

1 L. Euler. De formis radicum aequationum cujusque ordinis conjectatio. Commentarii academiae scientiarum imperialis Petropolitianae (1733); 6 (pub. 1738), pp.216-231 = Opera Omnia, Series 1 (Pure mathematics), vol. 6 (Theory of equations), pp. 1-19. [Euler Archive, E30 (Latin): http://www.eulerarchive.org/pages/E030.html

2 Bell J (2008). A conjecture on the forms of the roots of equations. arXiv:0806.1927v1 [math.HO]. http://arxiv.org/abs/0806.1927][An English translation of Euler's De formis radicum aequationum cujusque ordinis conjectatio (E30)].

3 L. Euler. Vollständige Anleitung zur Algebra (Elements of algebra), 2 vols, Royal Academy of Sciences, St. Petersburg (1770). [Euler Archive, E387 (English): http://www.eulerarchive.org/docs/originals/E387e.P1S4.pdf

4 C. R. Sangwin (Ed.). Euler's Elements of Algebra. Tarquin Publications, St Albans, UK (2006). [English translation of Euler 1770 (E387)]

5 W. S. Burnside and A. W. Panton. The theory of equations: with an introduction to the theory of binary algebraic forms. (7th edn.) 2 vols; Longmans, Green and Co., London (1912).

6 J. E. Cremona. Reduction of binary cubic and quartic forms. J. Comput. Math., 2 (1999), pp. 62-92. http://www.lms.ac.uk/jcm/2/lms98007// [The seminvariants G and $H^{2}-16 a^{2} I$ are denoted here by R and $3 Q$ respectively]

7 P. J. Olver. Classical invariant theory. London Mathematical Society Student Texts No. 44. Cambridge University Press (1999).

8 R. W. D. Nickalls. A new approach to solving the cubic: Cardan's solution revealed. Math. Gaz., 77 (Nov 1993) pp. 354-359. http://www.nickalls.org/dick/papers/maths/cubic1993.pdf http://www.jstor.org/stable/3619777

9 R. S. Ball. Note on the algebraical solution of biquadratic equations. Quarterly Journal of Pure and Applied Mathematics, 7 (1866) pp. 6-9, 358369. http://www.nickalls.org/dick/papers/maths/ball1866quartic.pdf

10 J. P. Dalton. On the graphical discrimination of the cubic and of the quartic. Math. Gaz., 17 (July 1933) pp. 189-196 http://www.jstor.org/stable/3607613

[^0]: ${ }^{1}$ This minor revision of the original article corrects typographic errors and incorporates some explanatory footnotes. The original published version is available from the JSTOR archive at http://www.jstor.org/stable/40378672
 ${ }^{2}$ Department of Anaesthesia, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK. email: dick@nickalls.org

[^1]: ${ }^{3}$ For a 3D version of Euler's solution in which the $\pm g_{i}$ are associated with the mid-points of the six edges of a regular tetrahedron, see Fig 2 in Nickalls (2012), The quartic equation: alignment with an equivalent tetrahedron, Mathematical Gazette, 96, 49-55; http://www.nickalls.org/dick/papers/maths/tetrahedron2012.pdf

[^2]: ${ }^{4}$ For real coefficients $G^{2} \geq 0$, and hence P must always be on or below the x-axis.

[^3]: ${ }^{5}$ Note that we could instead solve $S(x)=0$, and then use $r_{i}=\varepsilon^{2}+s_{i}$ (see Equation 14).
 ${ }^{6}$ Since $Y_{N f^{\prime}} \equiv G /\left(8 a^{2}\right)$ it is probably more convenient to use the sign of $-G / a$ instead.

