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1 Our theme

EVERYONE knows that the condition for the quadratic ax2+bx+c to have two
equal roots, i.e. to have a repeated root, is that its discriminant ∂2 = b2−4ac
should be zero. We should remark, at the outset, that we are concerned only

with ordinary polynomials whose coefficients are complex numbers. Indeed, little is
lost if a reader assumes that all our polynomials are real, i.e. have real numbers for
all their coefficients, though their complex roots must be considered as well as their
real ones.

Though less at one’s finger-tips nowadays, it has been known since the sixteenth
century that a cubic ax3 +3bx2 +3cx+d has a repeated root, i.e. two or three equal
roots, if and only if ∂3 is zero, where

∂3 = G2 +4H3

with
G = a2d−3abc+2b3

and
H = ac−b2.

Cardan, del Ferro and Tartaglia found ∂3 when they discovered formulae for the
three roots of the cubic in terms of square and cube roots of simple algebraic
expressions of its coefficients. Their first step was to write y = ax+b and transform
the original cubic into y3 +3Hy+G; this ‘reduced’ cubic has the same value for its
∂3. Standard texts vary as to what they call the discriminant; some take ∂3; others
prefer −∂3 or ∂3/4.

When Ferrari found expressions for the four roots of a quartic he obtained a
corresponding ∂4. Later, a determinantal formula was discovered for the algebraic
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discriminant ∂n of a polynomial of arbitrary degree n: we shall need to encounter
this briefly below.

For a real quadratic ∂2 does more than decide whether it has equal roots. Its
sign determines the nature of its real roots: there are two or no real roots according
as ∂2 > 0 or ∂2 < 0. Likewise, it is standard knowledge that a real cubic has three
or one real root according as ∂3 < 0 or ∂3 > 0. Yet the geometric meaning for ∂2 is
little known, and one for ∂3 has only been found recently when one of us (R.W.D.N.)
[1] geometrised Cardan’s method for solving cubics.

For a real polynomial f (x) of degree n without repeated roots the number of its
real roots is closely related to the shape of its graph. This number is the number
of times the graph crosses the x-axis. Thus, together with the sign of the leading
coefficient of f (x), i.e. the coefficient of xn, which determines the shape and sign
of f (x) for large positive and negative x, the number of real roots determines the
numbers of regions for which the graph is above or below the x-axis. One feels,
therefore, that there ought to be a geometrically rather than an algebraically defined
discriminant for f (x).

We show how to construct a very simply defined such geometric discriminant
(∆) in Section 4: for a real polynomial g(x) of degree n this ∆n is the product
of all the stationary values of g(x). The sign of ∆n gives information about the
number of real roots, and it vanishes if and only if g(x) has a repeated root. We
motivate the definition of ∆n by first recalling (Section 3) some standard geometry
for real polynomials that is perhaps less well known than its beauty merits. Since
the complex roots of g′(x) occur in conjugate pairs so do the complex stationary
values of g(x). Thus the sign of ∆n, when g(x) has no repeated roots, is unaffected
whether or not we take the product of just the real stationary values (this product is
1 if there are no real stationary values) or the product of all the stationary values,
real and complex. However, both because it is no easier to find the (number of) real
roots of g′(x) than those of g(x), and in order to include geometry in the complex
plane and to be able to extend the definition of ∆n to polynomials with complex
number coefficients, our ∆n is the product of all n−1 stationary values of g(x), real
and complex.

The Fundamental Theorem of Algebra states that a polynomial of degree n has
n complex number roots, some of which may be repeated. Suppose that those of
g(x) are α1,α2, . . . ,αn and write

Dn = ∏
i< j

(α j−αi)
2. (1)

Clearly Dn = 0 if and only if two of the αi are equal. Moreover, as we shall
briefly indicate in Section 2, this Dn can be expressed in terms of the coefficients
of g(x). So Dn, or one of its multiples, can be taken as ∂n. The nice surprise is
that ∆n is, essentially, the geometrisation of Dn: to within a scalar multiple the two
discriminants agree!
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We shall give an elementary proof of the

Identification Theorem. If g(x) is a polynomial of degree n with leading
coefficient a, and t1, t2, . . . , tn−1 are its n−1 stationary points, then

∆n =
n−1

∏
i=1

g(ti) = (−1)n(n−1)/2an−1n−nDn, (2)

with Dn as in (1).

On the way we encounter the pretty

Duality Theorem. The product of the values of g′(x) at the n roots of
g(x) is ann times the product of the values of g(x) at the n−1 roots of
g′(x).

2 The algebraic discriminant ∂

Let V be the Vandermonde n×n determinant whose ith row is 1,αi,α
2
i , . . . ,α

n−1
i .

It is standard that
V = ∏

i< j
(α j−αi).

To see this, observe that V has two equal rows, and so is zero if α j = αi; thus each
α j−αi is a factor of V . Its degree and the coefficient of the term α2α2

3 α3
4 . . .α

n−1
n

gives the result. If we premultiply V by its transpose we obtain, from (1),

Dn =

∣∣∣∣∣∣∣∣∣
s0 s1 s2 . . . sn−1
s1 s2 s3 . . . sn
...

...
...

. . .
...

sn−1 sn sn+1 . . . s2n−2

∣∣∣∣∣∣∣∣∣ , (3)

where

sm =
n

∑
i=1

α
m
i and s0 = n.

If
g(x) = axn +a1xn−1 +a2xn−2 + . . . +an−1x+an,

and we write
an+1 = an+2 = . . . = 0,

then Newton’s identities

asm +a1sm−1 +a2sm−2 + . . .+am−1s1 +mam = 0

allow s1,s2, . . . to be calculated in turn in terms of the coefficients of g(x). The
importance of this is that it allows Dn, and thus, from (2), our ∆n, to be evaluated
for g(x) without recourse to its roots or turning points. Since Abel and Ruffini
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proved that there are no formulae for the roots of a polynomial of degree more
than 4 analogous to those for quadratics, cubics and quartics, this is fortunate! Some
authors take Dn to be the algebraic discriminant of g(x); others use a2n−2Dn, which,
as the reader can check, has the advantage of agreeing with our ∂2, though not
with ∂3.

3 A little geometry of polynomials

A complex number α is a root of multiplicity m of a polynomial h(x) if

h(x) = (x−α)mk(x), (4)

where k(x) is a polynomial with k(α) 6= 0; α then counts m times to the roots of
h(x). If h(x) and α are real, it is obvious that h(x) changes or does not change
sign as x passes through α according as m is odd or even. If m is even we have a
maximum or minimum for h(x); if m is odd and m ≥ 3, an inflexion. Thus, if u
and v are real non-roots of h(x) then, modulo 2, the number of real roots, counting
multiplicities, of h(x) between u and v is congruent to the number of times the graph
of h(x) crosses the x-axis between u and v. This number is odd or even according
as h(u) and h(v) have opposite or the same sign. Thus, counting multiplicities, the
number of real roots of h(x) between u and v is odd or even according as h(u) and
h(v) have opposite or the same sign, i.e. according as they are the opposite or the
same side of the x-axis. Figure 1 shows a polynomial with three changes of sign
between u and v, four distinct roots, but seven roots counting their multiplicities of
2, 1, 3, 1.

Figure 1: The polynomial h(x) has an odd number, three, of changes of
sign and, counting multiplicities, an odd number, seven, of roots between
u and v.

According as its degree is odd or even h(x) has the opposite or same signs for
large positive or large negative x. Thus, in particular, h(x) has, counting multiplic-
ities, an odd or even number of real roots according as its degree is odd or even.
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Note that, from (4),

h′(x) = (x−α)m−1[mk(x)+(x−α)k′(x)].

The second factor does not have α for a root. Hence α is a root of multiplicity
m−1 of h(x). Thus an inflexion of h(x) counts as a root of even multiplicity for
h′(x). Further, α is a repeated root of h(x) if and only if it is also a root of h′(x),
i.e. if the graph of h(x) touches the x-axis at α .

4 The geometric discriminant ∆

Return to a real polynomial f (x) of degree n with no repeated roots, and denote its
leading coefficient by A. Suppose that α and β are consecutive real roots of f (x).
Then f (x) has the same sign for x between α and β . It changes sign in opposite
directions at α and β , so the non-zero f ′(α) and f ′(β ) have opposite signs. Hence,
by taking h(x) above to be f ′(x), we see that, counting multiplicities, f ′(x) has
an odd number of real roots between α and β . Indeed, counting multiplicities,
f (x) has an odd number of maxima and minima between α and β . Thus, counting
multiplicities, the product of the stationary values or the product of the maxima
and minima of f (x) between α and β is negative if and only if f (x) is negative
for x between α and β . Figure 2 shows the case of roots t1, t2, t3, t4, t5 of f ′(x) of
respective multiplicities 1, 2, 3, 1, 2 with t1, t3, t4 giving maxima or minima.

Figure 2: The polynomial f (x) has, counting multiplicities, an even
number, four, of stationary values above its largest root β , and an odd
number, nine, of stationary values, and an odd number, five, of maxima
and minima between consecutive simple roots α,β .

If β were the largest real root of f (x), then f (x) has the same sign as A for all
x > β , and so does f ′(x) for all large positive x. At β our f (x) changes from the sign
of −A to that of A, so f ′(x) has the same sign as A. Again by Section 4, f ′(x) has,
counting multiplicities, an even number of real roots above β . Figure 2 illustrates
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the case of four such roots. An analogous argument shows that f ′(x) has an even
number of roots below the least root of f (x).

Our conclusion is that if f (x) has at least one real root then the sign of the
product, counting multiplicities, of the real stationary values of f (x), or alterna-
tively, that of the maxima and minima, is that of (−1)N where N is the number of
consecutive pairs of real roots of f (x) between which f (x) is negative. If n is odd so
that f (x) has an odd number, say 2r+1, of real roots, then f (x) is positive between r
consecutive pairs of roots and negative between the other r pairs, so N = r. So each
of our products is positive if and only if 2r+1≡ 1 (mod 4). If n is even and f (x)
has 2r > 0 real roots, then f (x) has the opposite sign to A between the two lowest
roots, since it has the same sign as A below them. Thus N is r or r−1 according as
A is positive or negative. Thus the number of real roots is congruent to 0 modulo 4
if and only if our products have the same sign as A. Figure 2 illustrates the case
r = 1, A > 0 and the products negative. The reader is advised to draw diagrams of a
number of other possibilities and examine the obvious geometry, and to check that
our last statement for f (x) with even n remains true if r = 0.

As we remarked in Section 1, the signs of our products are unaffected if we
include the complex stationary values of f (x), which occur in complex conjugate
pairs corresponding to the complex conjugate pairs of roots, necessarily of the same
multiplicity, of f ′(x).

Formally, then, let g(x) be a polynomial of degree n. Let t1, t2, . . . , tn−1 be the
stationary values of g(x) and let

∆n =
n−1

∏
i=1

g(ti).

Then we have established the
Number of Roots Theorem.

(i) ∆n = 0 if and only if g(x) has a repeated root.

(ii) If g(x) is real then the number of real roots of g(x) is:

(a) if n is odd, congruent to 1 or 3 modulo 4 according as ∆n > 0 or ∆n < 0;

(b) if n is even, congruent to 0 or 2 modulo 4 according as ∆n and the
leading coefficient of g(x) have the same or opposite signs.

The geometrically defined ∆n thus serves as a discriminant for g(x).
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5 Proof of the Identification Theorem

Since α1, . . . ,αn are the roots of g(x), if a is its leading coefficient then

g(x) = a(x−α1)(x−α2) . . .(x−αn). (5)

Further, the leading coefficient of g′(x) is na, so that

g′(x) = na(x− t1)(x− t2) . . .(x− tn−1). (6)

It is immediate from (5) that ∆n, the product of the g(ti), contains each difference
ti−α j as a factor. If we collect those factors with a given α j we obtain

∆n = an−1
n

∏
j=1
{(t1−α j)(t2−α j) . . .(tn−1−α j)}.

Thus, by (6),

∆n =
n−1

∏
i=1

g(ti) = an−1
n

∏
j=1
{(−1)n−1(na)−1g′(α j)}= n−na−1

n

∏
j=1

g′(α j), (7)

since n(n−1) is even.
Direct differentiation of (5) gives

g′(x) = a{(x−α2)(x−α3) . . .(x−αn)+(x−α1)(x−α3) . . .(x−αn)

+ . . . +(x−α1) . . .(x−αn−1)}.

Thus
g′(α j) = a∏

i
i6= j

(α j−αi)

so, from (7),
∆n = n−nan−1

∏
i, j
i6= j

(α j−αi).

If i < j then both α j−αi and αi−α j occur in this product, and there are n(n−1)/2
such pairs i, j. Thus, by (1),

∆n = n−nan−1(−1)n(n−1)/2
∏
i< j

(α j−αi)
2 = n−nan−1(−1)n(n−1)/2Dn,

as claimed in (2).
Notice that (7) is precisely our Duality Theorem.
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6 Concluding remarks

The solution of cubics and quartics, and the algebra of Section 2, can be found in
many standard texts. So can the geometry of Section 3, though we have needed to be
more precise about multiplicities than some authors. The Duality Theorem can be
generalised to any pair of polynomials instead of g(x) and g′(x), as the reader will
readily discover. The last, straightforward, part of the proof of the Identification The-
orem, which shows, just by differentiating (5), that ∏ j g′(α j) = (−1)n(n−1)/2anDn,
is in some standard texts. ∆n itself, even regarded just as an algebraic object, has
received little notice. It does occur in [2, p. 88], where the Identification Theorem is
set as an exercise on resultant theory. That highbrow algebraic factorisation theory
provides an expression for ∆n as a (2n−1)× (2n−1) determinant whose entries
are multiples of the coefficients of g(x). Our purpose has been to emphasise the
geometry of the discriminant in terms of the maxima and minima of the polyno-
mial, and to show that its definition and properties are readily accessible by swift
elementary means.

In view of the differences, to within numerical multiples involving the leading
coefficient, of what is taken for ∂n in various texts, may we stake a claim for ∆n to
be taken as the canonical geometric discriminant? Then, for a cubic and quadratic
we have, respectively,

∂3 = G2 +4H3 = a4
∆3

and
∂2 =−4a∆2.

The first of these was obtained in [1] after finding the solutions of the cubic in
geometric form.
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