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1 Introduction

The cubic holds a double fascination since not only is it interesting in its own
right, but its solution is also the key to solving quartics.[ﬂ This article describes
five fundamental parameters of the cubic (§, A, h, zy and yy), and shows how
they lead to a significant modification of the standard method of solving the
cubic, generally known as Cardan’s solution.
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Figure 1:

!This minor revision of the original article corrects typographic errors and incorporates some
explanatory footnotes, a special font for G and H, a few minor text changes for clarification,
as well as a minor improvement to Figure 2]. The original published version is available from
www.jstor.org/stable/3619777.
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It is necessary to start with a definition. Let N(zy,yy) be a point on a
polynomial curve f(x) of degree n such that moving the axes by putting xz = z + zy
makes the sum of the roots of the new polynomial g(z) equal to zero (see
Section . It is easy to show that for the polynomial equation

ax” +bz" . 4+ k=0

xy = —b/(na). If f(x) is a cubic polynomial then g(z) is known as the reduced
cubic, and N is the point of inflection.
Now consider the general cubic

y = ax® + bx* + cx + d.

Here zy is —b/(3a), and N the point of symmetry of the cubic. Let the parameters
0, A, h, be defined as the distances shown in Figure It can be shown, and
readers will easily do this, that A and h are simple functions of § namelyﬂlﬂ

N =362 and h=2ad?,

where
b? — 3ac

9a2
This result is found easily by locating the turning points. Thus the shape of the
cubic is completely characterised by the parameter §. Either the maxima and
minima are distinct (62 > 0), or they coincide at N (62 = 0), or there are no real
turning points (62 < 0). Furthermore, the quantity adA?/h is constant for any
cubic, as follows

6% =

ad\? B §

h 2

The relationship A2 = 362 is a particular case of the general observation that

If a polynomial curve passes through the origin, then the
product of the roots x1,xg,...,x,—1 (excluding the solution
x = 0) is related to the product of the z-coordinates of the
turning points t1to...t,—1 by

T1X9 ... Tp—1 = N1ty ... Tp—1,

a result whose proof readers can profitably set to their classes, and which parallels
a related but more difficult result about the y-coordinates of the turning points
which we have discovered.[f]

*Unfortunately in the original printed version h was presented with a negative sign.

5Note that if my denotes the slope at the point of inflection N, then my = —3ad?.
See also Thomas Miiller’s interactive demonstration of how the parameters xn, yn, h,
6, my influence the shape and location of the cubic at demonstrations.wolfram.com/
ParametersForPlotting ACubicPolynomial/

°Nickalls RWD and Dye RH (1996). The geometry of the discriminant of a polynomial.
The Mathematical Gazette, 80 (July), 279-285 (JSTOR). (www.nickalls.org/dick/papers/maths/
discriminant1996.pdf)
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2 Solution of the cubic

In addition to their value in curve tracing, I have found that the parameters 9, h,
xy and yy, greatly clarify the standard method for solving the cubic since, unlike
the Cardan approach (Burnside and Panton, 1886)|Z| they reveal how the solution
is related to the geometry of the cubic.

For example, the standard Cardan solution using the classical terminology,
involves starting with an equation of the formlﬂ

az® + 3b12? + 3c1z +d = 0,

and then substituting = z — b /a to generate a reduced equation of the formﬂ

G

SH
az3+—z+—2:0,
a a

where
H = ac; — b% and G = a’d — 3abic; + Qbif.
Subsequent development yields a discriminant of the form G? + 4H? where

G? 4 4H? = a®(a®d* — 6abicid + 4aci + 4b3d — 3b3c?).

The problem is that it is not clear geometrically what the quantities G and H
represent. However, by using the parameters described earlier, not only is the
solution just as simple but the geometry is revealed.

2.1 New approach

Start with the usual form of the cubic equation
f(z) = az® +bax® 4+ cx +d =0, (1)

having roots a, 3, v, and obtain the reduced form by the substitution x = z + xx
(see Figure . The equation will now have the formm

9(2) = az® — 3a0%z + yy = 0, (2)

and have roots z1 = a — zn, 20 = 8 — Ty, 23 = 7 — Zy; a form which allows
the use of the usual identity

(p+9)° —3palp+q) — (0° +¢°) = 0.
Thus z = p + ¢ is a solution of where

pg=6" and p®+¢*=—yy/a.

78§ 56-57 (pages 106-109) —see footnote [19] for URL.

8This is the (historical) binomial form as used by Burnside and Panton (1886).

9We use the maths font (\mathbb) here for G and H to indicate that these particular invariants
are associated with the binomial equation format. A normal font can then be used for invariants
associated with the normal equation format, as in Nickalls (2009) —see footnote [3| for URL.

Oyv = flan) = f(=b/3a) = {20°/ (27a%) } — {bc/(3a)} + d
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Solving these equations as usual by cubing the first, substituting for ¢ in the
second, and solving the resulting quadratic in p? gives

1
3 _ _ 2 _ 402456
D _Qa{ Yy £/ Yz — 4a?0 },
, this becomes

P =g {2 )

When this solution is viewed in the light of Figure [1} it is immediately clear that
Equation [3] is particularly useful when there is a single real root, that is when

and, since h? = 4a%6°

y2 > h2.
Contrast this with the standard Cardan approach which gives

P i{-@i\/GZMHi% }

=243

which completely obscures this fact. The values of G, H, and G? + 4H3 are
therefore found to be

G =a*yy, H=—d?* and G?+4H> =a'(y? - h?).

However, Equation [3| can be rewritten as

3 1

p:%

{—yNi\/(yN+h) (yv — h) }
If the y-coordinate of a turning point is y, then let

yvth=yy, and yyv—h=ys,.

Our solution (Equation [3|) can therefore be written as

1
P3 = % {_yN £ /Y Un, } .
Using the symbol Ag for the (geometric) discriminantBE of the cubic, we have

Az = Y Yr, = yz% - h.

HThe product yr, Yz, of the y-coordinates of the turning points is known as the geometric
discriminant Ag of the cubic; it is the geometric analogue of the algebraic (classical) discriminant
(see Nickalls and Dye (1996)—for URL see footnote [6). The classical discriminant G* + 4H® has
the same sign as the geometric discriminant since G* + 4H® = a*(y2 — h?) = a4yT1yT2 =a*As.

2The algebraic discriminant D3 of the cubic is defined as the product of squared differences of
the roots; D3 = (a—B)*(a—=)*(8—~)” and hence a®Ds = —27(y3 —h*) = —27yr, yr, = —27As.
Note also that a*Ds = 18abed — 4ac® — 27a*d? + b?c® — 4b*d = —27a*(y2 — h?).
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Returning to the geometrical viewpoint, Figure [1| shows that the rest of the
solution depends on the sign of the discriminan‘clﬂ as follows:

y2 > h? 1 real root,
y2 = h? 3 real roots (two or three equal roots),
y2 < h? 3 distinct real roots.

These are now dealt with in order.

2.2 y2>h? ie.ynysn >0, or Cardan’s G*> + 4H® > 0
Clearly, there can only be one real root of equation [I] under these circumstances

(see Figure|l). As the discriminant is positive the value of the real root « is easily
obtained as[!%]

1 1
a—ww+§/m(—yN+\/y1%—h2)+§/2a (—yN—\/yfr—hQ)-

2.3 y2=h% ie. y,ys =0, or Cardan’s G* +4H> =0

Providing h # 0 this condition yields two equal roots, the roots being z = 6, §
and —24. The roots of are then xy + 9, xx + 6 and xy — 20. Since there are
two double root conditions the sign of § is critical, and depends on the sign of yy,
and so in these circumstances § has to be determined from

_ 39y
0= 5

If yv = h =0 then § = 0, in which case there are three equal roots at © = xy.

3Since the sign of the discriminant (y& — h?) reflects the relative magnitude of yz and hZ.
The remaining two complex roots of equation [1]are given by

ﬂ,’y:avN—%l:tj?\/zf—élp

where z1 = o — xn (see equation [2)) and j* = —1 (for derivation see: Nickalls RWD (2009).
Feedback: 93.35: The Mathematical Gazette; 93 (Mar), 154-156. www.nickalls.org/dick/papers/
maths/cubictables2009.pdf).
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Figure 2:

2.4 y2<h? ie.ynyn <0, or Cardan’s G*> + 4H® < 0

From Figures [T and [2] it is clear that there are three distinct real roots in this
case. However, our solution requires that we find the cube root of a complex
number, so it is easier to use trigonometry to solve the reduced form using the
substitution[r_gl z = 20 cos§ in Equation [2| This gives

2a6° (4 cos® § — 3 cos 0) +yv =0,
and since 2a8® = h, this becomes

_yN
= 4
cos 36 Y (4)

15To avoid the negative sign in use instead z = 2Jsin ¢, as this leads to sin3¢ = ynx/h,
for which the condition yy = 0 is associated with ¢ = 0. Use of this form is described in
Nickalls, RWD (2006); Viéte, Descartes and the cubic equation. The Mathematical Gazette;
90 (July), 203-208. (www.nickalls.org/dick/papers/maths/descartes2006.pdf)). Alternatively,
setting h = —2adé® yields cos 30 = yy/h (see Miiller T (2008); Physical Review D; 77, 124042.
(dx.doi.org/10.1103/PhysRevD.77.124042))
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The three roots «, # and v are therefore given bylﬂ

o =xy + 20 cosb,
B =xyx+2dcos (04 271/3), (5)
v =xy + 25 cos (0 +47/3).

These are shown in Figure [2| in relation to a circle, radius 29, centred above N.
Note that the maximum between roots § and v corresponds to the angle 27/3.

16To see this, note that it follows from Equation [4] that

ynv = —hcos 30,
y2 — h? = —h?sin? 36.

Substituting these into the Equation in Section 2-2] gives

a=xN + i/; <h00539+ v/ —h2sin? 30 ) + §/21 (hcos307 \/m)
a a

Since h = 2ad* this is equivalent to

oa=2zn+ {/53 (cos 30 + jsin360 ) + {'/63 (cos 30 — jsin36 ),
ie.,
a=zy+ 0 (cos@ + jsinh )+ (cosf — jsin0 ),

and hence
a = xn + 20 cosb.
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It is clear from Equation [4] that trigonometry [using real 0]E| can only be used
to solve the reduced cubic when

UYn
1< =< +1
<7 < +1,

a point which is completely obscured by the corresponding classical form
-G

cosd3) = ——.
2 (—H)3/2

"However, if we extend the range of 6 to include complex angles (§ € C), then all cubics can
be solved using this approach (see Holmes GC (2002); The use of hyperbolic cosines in solving
cubic polynomials. The Mathematical Gazette, 86, 473-477 (www.jstor.org/stable/3621149)).

For example, consider the reduced cubic f(x) = 2 — 3z — 52 = 0 (roots: 4, —2 + 3i), for
which zxy =0, yv = f(zn) = =52, 6 = 1, h = 2a6® = 2, and —yn /h = 26.

Using let £o = xn + 2d cos @ be the principal root, where cos 3¢ = —yy/h. Since in this
case |yn /h| > 1 (i.e., y3 > h?) it follows that § € C. Consequently we start by setting 6 = o+
(where o and 3 are real values), and hence the expression cos 30 = —yy /h is equivalent to

cos 3(a + i) = 26.

Expanding this using the identity cos(A + B) = cos Acos B — sin Asin B, and then letting
cosi3 — cosh3f and sini38 — isinh 33, we obtain cos3a cosh 3 — isin3a sinh38 = 26.
Separating the real (Re) and complex (Im) elements, we obtain a pair of simultaneous equations
involving both circular and hyperbolic functions, as follows:

Re: cos3a cosh3f = 26,
Im: —sin3asinh38 =0.

The solution for o and 3 is as follows:

We start by observing that either sin 3 or sinh 38 must be equal to zero.

If sinh 38 = 0 then cosh38 = 1 = cos 3ac = 26 which is impossible (since —1 < cosz < +1).
Consequently, it must be that sin 3a = 0 here, and hence either 3a. = 0 (i.e., cos3ac = +1) or
3a = +7 (i.e., cos3a = —1). However, cos3a = —1 = cosh 33 = —26 which is impossible
(since coshz > +1), and hence it must be that cos3a = +1 (which implies cosh33 = 26).
Let 3 denote the principal value of cos™ 1 (= 0). Let 33 denote the principal (+ve) value ** of
cosh™ 26 (~ 43-95087). Consequently we can write

a=(1/3)cos™ 1 =0,
B = (1/3) cosh™' 26 ~ 1-316957 radians.

Thus the three roots x, are given by

T = xn + 26 cos <0+ ?) (k=0,1,2),
where § = a + i and cos 30 = —yn /h.
When k = 0 then zo = 2§ cos(if) (since in this particular case zxy = 0 and a = 0). Since § =1
(see above) we obtain the real root zo, as follows:

2o =0+ 25 cos (04 i8) = 2(1) cos (i) = 2 cosh 8 ~ 2 cosh (1-316957) =2 x 2 =4,

We leave it as an exercise for the reader to verify that &k = 1,2 do indeed generate the complex
roots —2 =+ 3.

For some insight as to why cosh(1-316957) is (surprisingly) equal to the integer 2 see Example 3
in: Nickalls (2021), On the structure of polynomial roots, Mathematical Gazette, 105, pp.253—-262.
www.nickalls.org/dick /papers/maths/rootstructure2021.pdf
** Observe that cosh™' 26 ~ £3-95087; we can use either sign since cosh § = cosh(—8) > +1.
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3 Example
Solve the equationlﬂ
fx)=2® -T2 + 142 -8 =0
The parameters are
Ty =T7/3, yv = f(zy) =~ —0-74074, 6> =7/9 and h = 2aé® ~ 1-37187.

Since y2 < h?, it follows (see Figures [1|and [2) that there are three distinct real
roots, which are given by
T =1xyN + 2 cosb,

where

0830 — U 0-74074
~ h T 1:37187
So 0 = 19-1066°, and using the three roots are

o= g + 2\/Zcos 19-1066° = 4,

~ 0-53995.

B = Z + 2\/7COS 139-1066° = 1,
3 9
v = g 4 2\/Zcos 259-1066° = 2.

4 Conclusion

Finally, I would like to suggest that the usual Cardan-type terminology for cubics
and quartics, though it has been used for hundreds of years, be abandoned in
favour of the parameters 9, h, zy, yy, which reveal to such advantage how the
algebraic solution is related to the geometry of the cubic.
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