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1 Introduction

The cubic holds a double fascination since not only is it interesting in its own
right, but its solution is also the key to solving quartics. 3 This article describes
five fundamental parameters of the cubic (𝛿, 𝜆, ℎ, 𝑥𝑁 and 𝑦𝑁), and shows how
they lead to a significant modification of the standard method of solving the
cubic, generally known as Cardan’s solution.

X

Y

O

3δ• •
yN

xN

N
•• λ

•
h

δ

Figure 1:

1This minor revision of the original article corrects typographic errors and incorporates some
explanatory footnotes, a special font for G and H, a few minor text changes for clarification,
as well as a minor improvement to Figure 2 . The original published version is available from
www.jstor.org/stable/3619777.

2Department of Anaesthesia, Nottingham University Hospitals, City Hospital Campus,
Nottingham, UK. email: dick@nickalls.org

3Nickalls RWD (2009). The quartic equation: invariants and Euler’s solution revealed.
The Mathematical Gazette; 93, 66–75. (www.nickalls.org/dick/papers/maths/quartic2009.pdf)
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It is necessary to start with a definition. Let 𝑁(𝑥𝑁 , 𝑦𝑁) be a point on a
polynomial curve 𝑓(𝑥) of degree 𝑛 such that moving the axes by putting 𝑥 = 𝑧 + 𝑥𝑁

makes the sum of the roots of the new polynomial 𝑔(𝑧) equal to zero (see
Section 2.1). It is easy to show that for the polynomial equation

𝑎𝑥𝑛 + 𝑏𝑥𝑛−1 + . . . + 𝑘 = 0

𝑥𝑁 = −𝑏/(𝑛𝑎). If 𝑓(𝑥) is a cubic polynomial then 𝑔(𝑧) is known as the reduced
cubic, and 𝑁 is the point of inflection.

Now consider the general cubic

𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑.

Here 𝑥𝑁 is −𝑏/(3𝑎), and 𝑁 the point of symmetry of the cubic. Let the parameters
𝛿, 𝜆, ℎ, be defined as the distances shown in Figure 1. It can be shown, and
readers will easily do this, that 𝜆 and ℎ are simple functions of 𝛿 namely 4, 5

𝜆2 = 3𝛿2 and ℎ = 2𝑎𝛿3,

where
𝛿2 = 𝑏2 − 3𝑎𝑐

9𝑎2 .

This result is found easily by locating the turning points. Thus the shape of the
cubic is completely characterised by the parameter 𝛿. Either the maxima and
minima are distinct (𝛿2 > 0), or they coincide at 𝑁 (𝛿2 = 0), or there are no real
turning points (𝛿2 < 0). Furthermore, the quantity 𝑎𝛿𝜆2/ℎ is constant for any
cubic, as follows

𝑎𝛿𝜆2

ℎ
= 3

2.

The relationship 𝜆2 = 3𝛿2 is a particular case of the general observation that

If a polynomial curve passes through the origin, then the
product of the roots 𝑥1, 𝑥2, . . . , 𝑥𝑛−1 (excluding the solution
𝑥 = 0) is related to the product of the 𝑥-coordinates of the
turning points 𝑡1𝑡2 . . . 𝑡𝑛−1 by

𝑥1𝑥2 . . . 𝑥𝑛−1 = 𝑛𝑡1𝑡2 . . . 𝑡𝑛−1,

a result whose proof readers can profitably set to their classes, and which parallels
a related but more difficult result about the 𝑦-coordinates of the turning points
which we have discovered. 6

4Unfortunately in the original printed version ℎ was presented with a negative sign.
5Note that if 𝑚𝑁 denotes the slope at the point of inflection 𝑁 , then 𝑚𝑁 = −3𝑎𝛿2.

See also Thomas Müller’s interactive demonstration of how the parameters 𝑥𝑁 , 𝑦𝑁 , ℎ,
𝛿, 𝑚𝑁 influence the shape and location of the cubic at demonstrations.wolfram.com/
ParametersForPlottingACubicPolynomial/

6Nickalls RWD and Dye RH (1996). The geometry of the discriminant of a polynomial.
The Mathematical Gazette, 80 (July), 279–285 (jstor). (www.nickalls.org/dick/papers/maths/
discriminant1996.pdf)

demonstrations.wolfram.com/ParametersForPlottingACubicPolynomial/
demonstrations.wolfram.com/ParametersForPlottingACubicPolynomial/
www.nickalls.org/dick/papers/maths/discriminant1996.pdf
www.nickalls.org/dick/papers/maths/discriminant1996.pdf
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2 Solution of the cubic

In addition to their value in curve tracing, I have found that the parameters 𝛿, ℎ,
𝑥𝑁 and 𝑦𝑁 , greatly clarify the standard method for solving the cubic since, unlike
the Cardan approach (Burnside and Panton, 1886) 7 they reveal how the solution
is related to the geometry of the cubic.

For example, the standard Cardan solution using the classical terminology,
involves starting with an equation of the form 8

𝑎𝑥3 + 3𝑏1𝑥2 + 3𝑐1𝑥 + 𝑑 = 0,

and then substituting 𝑥 = 𝑧 − 𝑏1/𝑎 to generate a reduced equation of the form 9

𝑎𝑧3 + 3H
𝑎

𝑧 + G
𝑎2 = 0,

where
H = 𝑎𝑐1 − 𝑏2

1 and G = 𝑎2𝑑 − 3𝑎𝑏1𝑐1 + 2𝑏3
1.

Subsequent development yields a discriminant of the form G2 + 4H3 where

G2 + 4H3 = 𝑎2(𝑎2𝑑2 − 6𝑎𝑏1𝑐1𝑑 + 4𝑎𝑐3
1 + 4𝑏3

1𝑑 − 3𝑏2
1𝑐2

1).

The problem is that it is not clear geometrically what the quantities G and H
represent. However, by using the parameters described earlier, not only is the
solution just as simple but the geometry is revealed.

2.1 New approach

Start with the usual form of the cubic equation

𝑓(𝑥) ≡ 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0, (1)

having roots 𝛼, 𝛽, 𝛾, and obtain the reduced form by the substitution 𝑥 = 𝑧 + 𝑥𝑁

(see Figure 1). The equation will now have the form 10

𝑔(𝑧) ≡ 𝑎𝑧3 − 3𝑎𝛿2𝑧 + 𝑦𝑁 = 0, (2)

and have roots 𝑧1 = 𝛼 − 𝑥𝑁 , 𝑧2 = 𝛽 − 𝑥𝑁 , 𝑧3 = 𝛾 − 𝑥𝑁 ; a form which allows
the use of the usual identity

(𝑝 + 𝑞)3 − 3𝑝𝑞(𝑝 + 𝑞) − (𝑝3 + 𝑞3) = 0.

Thus 𝑧 = 𝑝 + 𝑞 is a solution of (2) where

𝑝𝑞 = 𝛿2 and 𝑝3 + 𝑞3 = −𝑦𝑁/𝑎.
7§§ 56–57 (pages 106–109) —see footnote 19 for url.
8This is the (historical) binomial form as used by Burnside and Panton (1886).
9We use the maths font (∖mathbb) here for G and H to indicate that these particular invariants

are associated with the binomial equation format. A normal font can then be used for invariants
associated with the normal equation format, as in Nickalls (2009) —see footnote 3 for url.

10𝑦𝑁 ≡ 𝑓(𝑥𝑁 ) ≡ 𝑓(−𝑏/3𝑎) =
{︀

2𝑏3/
(︀
27𝑎2)︀}︀

− {𝑏𝑐/(3𝑎)} + 𝑑
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Solving these equations as usual by cubing the first, substituting for 𝑞 in the
second, and solving the resulting quadratic in 𝑝3 gives

𝑝3 = 1
2𝑎

{︂
−𝑦𝑁 ±

√︁
𝑦2

𝑁 − 4𝑎2𝛿6
}︂

,

and, since ℎ2 = 4𝑎2𝛿6, this becomes

𝑝3 = 1
2𝑎

{︂
−𝑦𝑁 ±

√︁
𝑦2

𝑁 − ℎ2
}︂

. (3)

When this solution is viewed in the light of Figure 1, it is immediately clear that
Equation 3 is particularly useful when there is a single real root, that is when

𝑦2
𝑁 > ℎ2.

Contrast this with the standard Cardan approach which gives

𝑝3 = 1
2𝑎3

{︁
−G ±

√︀
G2 + 4H3

}︁
,

which completely obscures this fact. The values of G, H, and G2 + 4H3 are
therefore found to be

G = 𝑎2𝑦𝑁 , H = −𝑎2𝛿2 and G2 + 4H3 = 𝑎4(𝑦2
𝑁 − ℎ2).

However, Equation 3 can be rewritten as

𝑝3 = 1
2𝑎

{︂
−𝑦𝑁 ±

√︁
(𝑦𝑁 + ℎ) (𝑦𝑁 − ℎ)

}︂
.

If the 𝑦-coordinate of a turning point is 𝑦𝑇 then let

𝑦𝑁 + ℎ = 𝑦𝑇1 and 𝑦𝑁 − ℎ = 𝑦𝑇2.

Our solution (Equation 3) can therefore be written as

𝑝3 = 1
2𝑎

{︁
−𝑦𝑁 ± √

𝑦𝑇1𝑦𝑇2

}︁
.

Using the symbol Δ3 for the (geometric) discriminant 11, 12 of the cubic, we have

Δ3 = 𝑦𝑇1𝑦𝑇2 = 𝑦2
𝑁 − ℎ2.

11The product 𝑦𝑇1𝑦𝑇2 of the y-coordinates of the turning points is known as the geometric
discriminant Δ3 of the cubic; it is the geometric analogue of the algebraic (classical) discriminant
(see Nickalls and Dye (1996)—for url see footnote 6). The classical discriminant G2 + 4H3 has
the same sign as the geometric discriminant since G2 + 4H3 = 𝑎4(𝑦2

𝑁 − ℎ2) = 𝑎4𝑦𝑇1𝑦𝑇2 = 𝑎4Δ3.
12The algebraic discriminant 𝐷3 of the cubic is defined as the product of squared differences of

the roots; 𝐷3 = (𝛼−𝛽)2(𝛼−𝛾)2(𝛽 −𝛾)2 and hence 𝑎2𝐷3 = −27(𝑦2
𝑁 −ℎ2) = −27𝑦𝑇1𝑦𝑇2 = −27Δ3.

Note also that 𝑎4𝐷3 = 18𝑎𝑏𝑐𝑑 − 4𝑎𝑐3 − 27𝑎2𝑑 2 + 𝑏2𝑐2 − 4𝑏3𝑑 = −27𝑎2(𝑦2
𝑁 − ℎ2).
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Returning to the geometrical viewpoint, Figure 1 shows that the rest of the
solution depends on the sign of the discriminant 13 as follows:

𝑦2
𝑁 > ℎ2 1 real root,

𝑦2
𝑁 = ℎ2 3 real roots (two or three equal roots),

𝑦2
𝑁 < ℎ2 3 distinct real roots.

These are now dealt with in order.

2.2 𝑦2
𝑁 > ℎ2 i.e. 𝑦𝑇1𝑦𝑇2 > 0, or Cardan’s G2 + 4H3 > 0

Clearly, there can only be one real root of equation 1 under these circumstances
(see Figure 1). As the discriminant is positive the value of the real root 𝛼 is easily
obtained as 14

𝛼 = 𝑥𝑁 + 3

√︃
1
2𝑎

(︂
−𝑦𝑁 +

√︁
𝑦2

𝑁 − ℎ2
)︂

+ 3

√︃
1
2𝑎

(︂
−𝑦𝑁 −

√︁
𝑦2

𝑁 − ℎ2
)︂

.

2.3 𝑦2
𝑁 = ℎ2 i.e. 𝑦𝑇1𝑦𝑇2 = 0, or Cardan’s G2 + 4H3 = 0

Providing ℎ ̸= 0 this condition yields two equal roots, the roots being 𝑧 = 𝛿, 𝛿
and −2𝛿. The roots of (1) are then 𝑥𝑁 + 𝛿, 𝑥𝑁 + 𝛿 and 𝑥𝑁 − 2𝛿. Since there are
two double root conditions the sign of 𝛿 is critical, and depends on the sign of 𝑦𝑁 ,
and so in these circumstances 𝛿 has to be determined from

𝛿 = 3

√︂
𝑦𝑁

2𝑎
.

If 𝑦𝑁 = ℎ = 0 then 𝛿 = 0, in which case there are three equal roots at 𝑥 = 𝑥𝑁 .
13Since the sign of the discriminant (𝑦2

𝑁 − ℎ2) reflects the relative magnitude of 𝑦2
𝑁 and ℎ2.

14The remaining two complex roots of equation 1 are given by

𝛽, 𝛾 = 𝑥𝑁 − 𝑧1

2 ± 𝑗

√
3

2
√︀

𝑧2
1 − 4𝛿2

where 𝑧1 = 𝛼 − 𝑥𝑁 (see equation 2) and 𝑗2 = −1 (for derivation see: Nickalls RWD (2009).
Feedback: 93.35: The Mathematical Gazette; 93 (Mar), 154–156. www.nickalls.org/dick/papers/
maths/cubictables2009.pdf).

www.nickalls.org/dick/papers/maths/cubictables2009.pdf
www.nickalls.org/dick/papers/maths/cubictables2009.pdf
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Figure 2:

2.4 𝑦2
𝑁 < ℎ2 i.e. 𝑦𝑇1𝑦𝑇2 < 0, or Cardan’s G2 + 4H3 < 0

From Figures 1 and 2 it is clear that there are three distinct real roots in this
case. However, our solution requires that we find the cube root of a complex
number, so it is easier to use trigonometry to solve the reduced form using the
substitution 15 𝑧 = 2𝛿 cos 𝜃 in Equation 2. This gives

2𝑎𝛿3
(︁
4 cos3 𝜃 − 3 cos 𝜃

)︁
+ 𝑦𝑁 = 0,

and since 2𝑎𝛿3 = ℎ, this becomes

cos 3𝜃 = −𝑦𝑁

ℎ
. (4)

15To avoid the negative sign in (4) use instead 𝑧 = 2𝛿 sin 𝜑, as this leads to sin 3𝜑 = 𝑦𝑁 /ℎ,
for which the condition 𝑦𝑁 = 0 is associated with 𝜑 = 0. Use of this form is described in
Nickalls, RWD (2006); Viète, Descartes and the cubic equation. The Mathematical Gazette;
90 (July), 203–208. (www.nickalls.org/dick/papers/maths/descartes2006.pdf). Alternatively,
setting ℎ = −2𝑎𝛿3 yields cos 3𝜃 = 𝑦𝑁 /ℎ (see Müller T (2008); Physical Review D; 77, 124042.
(dx.doi.org/10.1103/PhysRevD.77.124042))

www.nickalls.org/dick/papers/maths/descartes2006.pdf
dx.doi.org/10.1103/PhysRevD.77.124042
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The three roots 𝛼, 𝛽 and 𝛾 are therefore given by 16⎧⎪⎨⎪⎩
𝛼 = 𝑥𝑁 + 2𝛿 cos 𝜃,
𝛽 = 𝑥𝑁 + 2𝛿 cos (𝜃 + 2𝜋/3),
𝛾 = 𝑥𝑁 + 2𝛿 cos (𝜃 + 4𝜋/3).

(5)

These are shown in Figure 2 in relation to a circle, radius 2𝛿, centred above N.
Note that the maximum between roots 𝛽 and 𝛾 corresponds to the angle 2𝜋/3.

16To see this, note that it follows from Equation 4 that{︂
𝑦𝑁 = −ℎ cos 3𝜃,

𝑦2
𝑁 − ℎ2 = −ℎ2 sin2 3𝜃.

Substituting these into the Equation in Section 2.2 gives

𝛼 = 𝑥𝑁 + 3

√︂
1
2𝑎

(︁
ℎ cos 3𝜃 +

√︀
−ℎ2 sin2 3𝜃

)︁
+ 3

√︂
1
2𝑎

(︁
ℎ cos 3𝜃 −

√︀
−ℎ2 sin2 3𝜃

)︁
.

Since ℎ = 2𝑎𝛿3 this is equivalent to

𝛼 = 𝑥𝑁 + 3
√︀

𝛿3 (cos 3𝜃 + 𝑗sin 3𝜃 ) + 3
√︀

𝛿3 (cos 3𝜃 − 𝑗sin 3𝜃 ),

i.e.,
𝛼 = 𝑥𝑁 + 𝛿 (cos 𝜃 + 𝑗sin 𝜃 ) + 𝛿 (cos 𝜃 − 𝑗sin 𝜃 ) ,

and hence
𝛼 = 𝑥𝑁 + 2𝛿 cos 𝜃.



RWD Nickalls The Mathematical Gazette (1993); 77, pp. 354–359 8

It is clear from Equation 4 that trigonometry [using real 𝜃] 17 can only be used
to solve the reduced cubic when

−1 ≤ 𝑦𝑁

ℎ
≤ +1,

a point which is completely obscured by the corresponding classical form

cos 3𝜃 = −G

2 (−H)3/2
.

17However, if we extend the range of 𝜃 to include complex angles (𝜃 ∈ C), then all cubics can
be solved using this approach (see Holmes GC (2002); The use of hyperbolic cosines in solving
cubic polynomials. The Mathematical Gazette, 86, 473–477 (www.jstor.org/stable/3621149)).

For example, consider the reduced cubic 𝑓(𝑥) ≡ 𝑥3 − 3𝑥 − 52 = 0 (roots: 4, −2 ± 3𝑖), for
which 𝑥𝑁 = 0, 𝑦𝑁 = 𝑓(𝑥𝑁 ) = −52, 𝛿2 = 1, ℎ = 2𝑎𝛿3 = 2, and −𝑦𝑁 /ℎ = 26.

Using (5) let 𝑥0 = 𝑥𝑁 + 2𝛿 cos 𝜃 be the principal root, where cos 3𝜃 = −𝑦𝑁 /ℎ. Since in this
case |𝑦𝑁 /ℎ| > 1 (i.e., 𝑦2

𝑁 > ℎ2) it follows that 𝜃 ∈ C. Consequently we start by setting 𝜃 = 𝛼 + 𝑖𝛽
(where 𝛼 and 𝛽 are real values), and hence the expression cos 3𝜃 = −𝑦𝑁 /ℎ is equivalent to

cos 3(𝛼 + 𝑖𝛽) = 26.

Expanding this using the identity cos(𝐴 + 𝐵) = cos 𝐴 cos 𝐵 − sin 𝐴 sin 𝐵, and then letting
cos 𝑖3𝛽 → cosh 3𝛽 and sin 𝑖3𝛽 → 𝑖 sinh 3𝛽, we obtain cos 3𝛼 cosh 3𝛽 − 𝑖 sin 3𝛼 sinh 3𝛽 = 26.
Separating the real (𝑅𝑒) and complex (𝐼𝑚) elements, we obtain a pair of simultaneous equations
involving both circular and hyperbolic functions, as follows:{︂

𝑅𝑒 : cos 3𝛼 cosh 3𝛽 = 26,

𝐼𝑚 : − sin 3𝛼 sinh 3𝛽 = 0.

The solution for 𝛼 and 𝛽 is as follows:
We start by observing that either sin 3𝛼 or sinh 3𝛽 must be equal to zero.
If sinh 3𝛽 = 0 then cosh 3𝛽 = 1 =⇒ cos 3𝛼 = 26 which is impossible (since −1 ≤ cos 𝑥 ≤ +1).
Consequently, it must be that sin 3𝛼 = 0 here, and hence either 3𝛼 = 0 (i.e., cos 3𝛼 = +1) or
3𝛼 = ±𝜋 (i.e., cos 3𝛼 = −1). However, cos 3𝛼 = −1 =⇒ cosh 3𝛽 = −26 which is impossible
(since cosh 𝑥 ≥ +1), and hence it must be that cos 3𝛼 = +1 (which implies cosh 3𝛽 = 26).
Let 3𝛼 denote the principal value of cos−1 1 (= 0). Let 3𝛽 denote the principal (+ve) value ** of
cosh−1 26 (≈ +3·95087). Consequently we can write{︂

𝛼 = (1/3) cos−1 1 = 0,

𝛽 = (1/3) cosh−1 26 ≈ 1·316957 radians.

Thus the three roots 𝑥𝑘 are given by

𝑥𝑘 = 𝑥𝑁 + 2𝛿 cos
(︁

𝜃 + 2𝜋𝑘

3

)︁
(𝑘 = 0, 1, 2),

where 𝜃 = 𝛼 + 𝑖𝛽 and cos 3𝜃 = −𝑦𝑁 /ℎ.
When 𝑘 = 0 then 𝑥0 = 2𝛿 cos(𝑖𝛽) (since in this particular case 𝑥𝑁 = 0 and 𝛼 = 0). Since 𝛿 = 1

(see above) we obtain the real root 𝑥0, as follows:

𝑥0 = 0 + 2𝛿 cos (0 + 𝑖𝛽) = 2(1) cos (𝑖𝛽) = 2 cosh 𝛽 ≈ 2 cosh (1·316957) = 2 × 2 = 4,

We leave it as an exercise for the reader to verify that 𝑘 = 1, 2 do indeed generate the complex
roots −2 ± 3𝑖.

For some insight as to why cosh(1·316957) is (surprisingly) equal to the integer 2 see Example 3
in: Nickalls (2021), On the structure of polynomial roots, Mathematical Gazette, 105, pp.253–262.
www.nickalls.org/dick/papers/maths/rootstructure2021.pdf
** Observe that cosh−1 26 ≈ ±3·95087; we can use either sign since cosh 𝛽 = cosh(−𝛽) ≥ +1.

www.jstor.org/stable/3621149
www.nickalls.org/dick/papers/maths/rootstructure2021.pdf
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3 Example

Solve the equation 18

𝑓(𝑥) ≡ 𝑥3 − 7𝑥2 + 14𝑥 − 8 = 0

The parameters are

𝑥𝑁 = 7/3, 𝑦𝑁 = 𝑓(𝑥𝑁) ≈ −0·74074, 𝛿2 = 7/9 and ℎ = 2𝑎𝛿3 ≈ 1·37187.

Since 𝑦2
𝑁 < ℎ2, it follows (see Figures 1 and 2) that there are three distinct real

roots, which are given by
𝑥 = 𝑥𝑁 + 2𝛿 cos 𝜃,

where
cos 3𝜃 = −𝑦𝑁

ℎ
≈ 0·74074

1·37187 ≈ 0·53995.

So 𝜃 ≈ 19·1066∘, and using (5) the three roots are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛼 = 7
3 + 2

√︂
7
9 cos 19·1066∘ = 4,

𝛽 = 7
3 + 2

√︂
7
9 cos 139·1066∘ = 1,

𝛾 = 7
3 + 2

√︂
7
9 cos 259·1066∘ = 2.

4 Conclusion

Finally, I would like to suggest that the usual Cardan-type terminology for cubics
and quartics, though it has been used for hundreds of years, be abandoned in
favour of the parameters 𝛿, ℎ, 𝑥𝑁 , 𝑦𝑁 , which reveal to such advantage how the
algebraic solution is related to the geometry of the cubic.
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